ACERO
HISTORIA

En el siglo IV a. C. armas como la falcata fueron producidas en la península Ibérica. La China antigua bajo la dinastía Han, entre el 202 a. C. y el 220 d. C., creó acero al derretir hierro forjado junto con hierro fundido, obteniendo así el mejor producto de carbón intermedio, el acero, en torno al siglo I a. C. Junto con sus métodos originales de forjar acero, los chinos también adoptaron los métodos de producción para la creación de acero wootz, una idea importada de India a China hacia el siglo V.
El acero wootz fue producido en India y en Sri Lanka desde aproximadamente el año 300 a. C. Este temprano método utilizaba un horno de viento, soplado por los monzones. También conocido como acero Damasco, el acero wootz es famoso por su durabilidad y capacidad de mantener un filo. Originalmente fue creado de un número diferente de materiales, incluyendo trazas de otros elementos en concentraciones menores a 1000 partes por millón o 0,1% de la composición de la roca. Era esencialmente una complicada aleación con hierro como su principal componente. Estudios recientes han sugerido que en su estructura se incluían nanotubos de carbono, lo que quizá explique algunas de sus cualidades legendarias; aunque teniendo en cuenta la tecnología disponible en ese momento fueron probablemente producidos más por casualidad que por diseño. El acero crucible (Crucible steel) basado en distintas técnicas de producir aleaciones de acero empleando calor lento y enfriando hierro puro y carbón— fue producido en Merv entre el siglo IX y el siglo X.
FABRICACION DEL ACERO
ENSAYOS MECÁNICOS DEL ACERO
Hay dos tipos de ensayos, unos que pueden ser destructivos y otros no destructivos.
Ensayos no destructivos
Los ensayos no destructivos son los siguientes:
Ensayo microscópico y rugosidad superficial. Microscopios y rugosímetros.
- Ensayos por ultrasonidos.
- Ensayos por líquidos penetrantes.
- Ensayos por partículas magnéticas.
Ensayos destructivos
Los ensayos destructivos son los siguientes:
Ensayo de tracción con probeta normalizada.
- Ensayo de resiliencia.
- Ensayo de compresión con probeta normalizada.
- Ensayo de cizallamiento.
- Ensayo de flexión.
- Ensayo de torsión.
- Ensayo de plegado.
- Ensayo de fatiga.
- Ensayo de dureza (Brinell, Rockwell, Vickers). Mediante durómetros.
Todos los aceros tienen estandarizados los valores de referencia de cada tipo de ensayo al que se le somete
APLICACIONES DEL ACERO
Los fabricantes de medios de transporte de mercancías (camiones) y los de maquinaria agrícola son grandes consumidores de acero.
También son grandes consumidores de acero las actividades constructoras de índole ferroviario desde la construcción de infraestructuras viarias así como la fabricación de todo tipo de material rodante.
Otro tanto cabe decir de la industria fabricante de armamento, especialmente la dedicada a construir armamento pesado, vehículos blindados y acorazados.
También consumen mucho acero los grandes astilleros constructores de barcos especialmente petroleros, y gasistas u otros buques cisternas.
Como consumidores destacados de acero cabe citar a los fabricantes de automóviles porque muchos de sus componentes significativos son de acero.
A modo de ejemplo cabe citar los siguientes componentes del automóvil que son de acero:
Son de acero forjado entre otros componentes: cigüeñal, bielas, piñones, ejes de transmisión de caja de velocidades y brazos de articulación de la dirección.
De chapa de estampación son las puertas y demás componentes de la carrocería.
De acero laminado son los perfiles que conforman el bastidor.
Son de acero todos los muelles que incorporan como por ejemplo; muelles de válvulas, de asientos, de prensa embrague, de amortiguadores, etc.
De acero de gran calidad son todos los rodamientos que montan los automóviles.
De chapa troquelada son las llantas de las ruedas, excepto las de alta gama que son de aleaciones de aluminio.
De acero son todos los tornillos y tuercas.
Cabe destacar que cuando el automóvil pasa a desgüace por su antigüedad y deterioro se separan todas las piezas de acero, son convertidas en chatarra y son reciclados de nuevo en acero mediante hornos eléctricos y trenes de laminación o piezas de fundición de hierro.
MECANIZADO DEL ACERO
El proceso de laminado consiste en calentar previamente los lingotes de acero fundido a una temperatura que permita la deformación del lingote por un proceso de estiramiento y desbaste que se produce en una cadena de cilindros a presión llamado tren de laminación. Estos cilindros van conformando el perfil deseado hasta conseguir las medidas adecuadas. Las dimensiones del acero que se consigue no tienen tolerancias muy ajustadas y por eso muchas veces a los productos laminados hay que someterlos a fases de mecanizado para ajustar su tolerancia.

El sentido de la forja de piezas de acero es reducir al máximo posible la cantidad de material que debe eliminarse de las piezas en sus procesos de mecanizado. En la forja por estampación la fluencia del material queda limitada a la cavidad de la estampa, compuesta por dos matrices que tienen grabada la forma de la pieza que se desea conseguir.

Las barras de acero corrugados se producen en una gama de diámetros que van de 6 a 40 mm, en la que se cita la sección en cm2 que cada barra tiene así como su peso en kg. Las barras inferiores o iguales a 16 mm de diámetro se pueden suministrar en barras o rollos, para diámetros superiores a 16 siempre se suministran en forma de barras.

TRATAMIENTOS DEL ACERO
Los tratamientos superficiales más usados son los siguientes:
Cromado: recubrimiento superficial para proteger de la oxidación y embellecer.
Galvanizado: tratamiento superficial que se da a la chapa de acero.
Niquelado: baño de níquel con el que se protege un metal de la oxidación.
Pavonado: tratamiento superficial que se da a piezas pequeñas de acero, como la tornillería.
Pintura: usado especialmente en estructuras, automóviles, barcos, etc.

- Temple
- Cementacion
- Nitruracion
- Revenido
- Recocido
- Cianuracion
- Normalizado
Entre los factores que afectan a los procesos de tratamiento térmico del acero se encuentran la temperatura y el tiempo durante el que se expone a dichas condiciones al material. Otro factor determinante es la forma en la que el acero vuelve a la temperatura ambiente. El enfriamiento del proceso puede incluir su inmersión en aceite o el uso del aire como refrigerante.
El método del tratamiento térmico, incluyendo su enfriamiento, influye en que el acero tome sus propiedades comerciales.
Según ese método, en algunos sistemas de clasificación, se le asigna un prefijo indicativo del tipo. Por ejemplo, el acero O-1, o A2, A6 (o S7) donde la letra "O" es indicativo del uso de aceite (del inglés: oil quenched), y "A" es la inicial de aire; el prefijo "S" es indicativo que el acero ha sido tratado y considerado resistente al golpeo (Shock resistant).
IMPUREZAS EN EL ACERO
Azufre: límite máximo aproximado: 0,04%. El azufre con el hierro forma sulfuro, el que, conjuntamente con la austenita, da lugar a un eutéctico cuyo punto de fusión es bajo y que, por lo tanto, aparece en bordes de grano. Cuando los lingotes de acero colado deben ser laminados en caliente, dicho eutéctico se encuentra en estado líquido, lo que provoca el desgranamiento del material.
Se controla la presencia de sulfuro mediante el agregado de manganeso. El manganeso tiene mayor afinidad por el azufre que el hierro por lo que en lugar de FeS se forma MnS que tiene alto punto de fusión y buenas propiedades plásticas. El contenido de Mn debe ser aproximadamente cinco veces la concentración de S para que se produzca la reacción.
El resultado final, una vez eliminados los gases causantes, es una fundición menos porosa, y por lo tanto de mayor calidad.
Aunque se considera un elemento perjudicial, su presencia es positiva para mejorar la maquinabilidad en los procesos de mecanizado. Cuando el porcentaje de azufre es alto puede causar poros en la soldadura.
Fósforo: límite máximo aproximado: 0,04%. El fósforo resulta perjudicial, ya sea al disolverse en la ferrita, pues disminuye la ductilidad, como también por formar FeP (fosfuro de hierro). El fosfuro de hierro, junto con la austenita y la cementita, forma un eutéctico ternario denominado esteadita, el que es sumamente frágil y posee punto de fusión relativamente bajo, por lo cual aparece en bordes de grano, transmitiéndole al material su fragilidad.
Aunque se considera un elemento perjudicial en los aceros, porque reduce la ductilidad y la tenacidad, haciéndolo quebradizo, a veces se agrega para aumentar la resistencia a la tensión y mejorar la maquinabilidad
ELEMENTOS ALEANTES DEL ACERO Y MEJORAS OBTENIDAS CON LA ALEACIÓN

- Aluminio: se emplea como elemento de aleación en los aceros de nitruracion, que suele tener 1% aproximadamente de aluminio. Como desoxidante se suele emplear frecuentemente en la fabricación de muchos aceros. Todos los aceros aleados en calidad contienen aluminio en porcentajes pequeñísimos, variables generalmente desde 0,001 a 0,008%. También se utiliza como elemento desoxidante.
- Boro: en muy pequeñas cantidades (del 0,001 al 0,0015%) logra aumentar la capacidad de endurecimiento cuando el acero está totalmente desoxidado, pues se combina con el carbono para formar carburos proporcionando un revestimiento duro y mejorando la templabilidad.
- Cobalto: muy endurecedor. Disminuye la templabilidad. Mejora la dureza en caliente. El cobalto es un elemento poco habitual en los aceros.Se usa en los aceros rápidos para herramientas, aumenta la dureza de la herramienta en caliente.
- Cromo: es uno de los elementos especiales más empleados para la fabricación de aceros aleados, usándose indistintamente en los aceros de construcción, en los de herramientas, en los inoxidables y los de resistencia en caliente. Se emplea en cantidades diversas desde 0,30% a 30%, según los casos y sirve para aumentar la dureza y la resistencia a la tracción de los aceros, mejora la templabilidad, impide las deformaciones en el temple, aumenta la resistencia al desgaste, la inoxidabilidad (con concentraciones superiores al 12%), etc.
- Estaño: es el elemento que se utiliza para recubrir láminas muy delgadas de acero que conforman la hojalata.
- Manganeso: aparece prácticamente en todos los aceros, debido, principalmente, a que se añade como elemento de adición para neutralizar la perniciosa influencia del azufre y del oxigeno, que siempre suelen contener los aceros cuando se encuentran en estado líquido en los hornos durante los procesos de fabricación.
- Molibdeno: es un elemento habitual del acero y aumenta mucho la profundidad de endurecimiento de acero, así como su tenacidad. Los aceros inoxidables austeníticos contienen molibdeno para mejorar la resistencia a la corrosión.
- Nitrógeno: se agrega a algunos aceros para promover la formación de austenita.
- Níquel: una de las mayores ventajas que reporta el empleo del níquel, es evitar el crecimiento del grano en los tratamientos térmicos, lo que sirve para producir en ellos gran tenacidad. El níquel además hace descender los puntos críticos y por ello los tratamientos pueden hacerse a temperaturas ligeramente más bajas que la que corresponde a los aceros ordinarios. Experimentalmente se observa que con los aceros aleados con níquel se obtiene para una misma dureza, un limite de elasticidad ligeramente más elevado y mayores alargamientos y resistencias que con los aceros al carbono o de baja aleación.
- Plomo: el plomo no se combina con el acero, se encuentra en él en forma de pequeñísimos glóbulos, como si estuviese emulsionado, lo que favorece la fácil mecanización por arranque de viruta, (torneado, cepillado, taladrado, etc.) ya que el plomo es un buen lubricante de corte, el porcentaje oscila entre 0,15% y 0,30% debiendo limitarse el contenido de carbono a valores inferiores al 0,5% debido a que dificulta el templado y disminuye la tenacidad en caliente.se añade a algunos aceros para mejorar mucho la maquinabilidad.
- Silicio: aumenta moderadamente la templabilidad. Se usa como elemento desoxidante. Aumenta la resistencia de los aceros bajos en carbono.
- Titanio: se usa para estabilizar y desoxidar el acero, mantiene estables las propiedades del acero a alta temperatura.
- Tungsteno: también conocido como wolframio. Forma con el hierro carburos muy complejos estables y durísimos, soportando bien altas temperaturas. En porcentajes del 14 al 18 %, proporciona aceros rápidos con los que es posible triplicar la velocidad de corte de loa aceros al carbono para herramientas.
- Vanadio: posee una enérgica acción desoxidante y forma carburos complejos con el hierro, que proporcionan al acero una buena resistencia a la fatiga, tracción y poder cortante en los aceros para herramientas.
- Zinc: es elemento clave para producir chapa de acero galvanizado.
FORMACIÓN DEL ACERO. DIAGRAMA HIERRO-CARBONO (Fe-C)
Hasta los 911 °C, el hierro ordinario, cristaliza en el sistema cúbico centrado en el cuerpo (BCC) y recibe la denominación de hierro α o ferrita. Es un material dúctil y maleable responsable de la buena forjabilidad de las aleaciones con bajo contenido en carbono y es ferromagnético hasta los 770 °C (temperatura de Curie a la que pierde dicha cualidad). La ferrita puede disolver muy pequeñas cantidades de carbono.
Entre 911 y 1400 °C cristaliza en el sistema cúbico centrado en las caras (FCC) y recibe la denominación de hierro γ o austenita. Dada su mayor compacidad la austenita se deforma con mayor facilidad y es paramagnética.
Entre 1400 y 1538 °C cristaliza de nuevo en el sistema cúbico centrado en el cuerpo y recibe la denominación de hierro δ que es en esencia el mismo hierro alfa pero con parámetro de red mayor por efecto de la temperatura.
A mayor temperatura el hierro se encuentra en estado líquido.
Si se añade carbono al hierro, sus átomos podrían situarse simplemente en los instersticios de la red cristalina de éste último; sin embargo en los aceros aparece combinado formando carburo de hierro (Fe3C), es decir, un compuesto químico definido y que recibe la denominación de cementita de modo que los aceros al carbono están constituidas realmente por ferrita y cementita.
Un eutéctico (composición para la cual el punto de fusión es mínimo) que se denomina ledeburita y contiene un 4,3% de carbono (64,5 % de cementita). La ledeburita aparece entre los constituyentes de la aleación cuando el contenido en carbono supera el 2% (región del diagrama no mostrada) y es la responsable de la mala forjabilidad de la aleación marcando la frontera entre los aceros con menos del 2% de C (forjables) y las fundiciones con porcentajes de carbono superiores (no forjables y fabricadas por moldeo). De este modo se observa que por encima de la temperatura crítica A3 los aceros están constituidos sólo por austenita, una solución sólida de carbono en hierro γ y su microestructura en condiciones de enfriamiento lento dependerá por tanto de las transformaciones que sufra ésta.
Un eutectoide en la zona de los aceros, equivalente al eutéctico pero en estado sólido, donde la temperatura de transformación de la austenita es mínima. El eutectoide contiene un 0,77 %C (13,5% de cementita) y se denomina perlita. Está constituido por capas alternas de ferrita y cementita, siendo sus propiedades mecánicas intermedias entre las de la ferrita y la cementita.
La existencia del eutectoide permite distinguir dos tipos de aleaciones de acero:
Aceros hipoeutectoides (<>Aceros hipereutectoides (>0,77% C). Al enfriarse por debajo de la temperatura crítica se precipita el carburo de hierro resultando a temperatura ambiente cristales de perlita embebidos en una matriz de cementita.
PRODUCCION Y CONSUMO DE ACERO
El consumo mundial de productos de acero acabados en 2005 registró un aumento de aproximadamente un 6% y supera actualmente los mil millones de toneladas. La evolución del consumo aparente resulta sumamente dispar entre las principales regiones geográficas. El consumo aparente, excluida China, experimentó una caída del 1,0% debida, fundamentalmente, a la notable disminución observada en Europa (EU25) y Norteamérica. China, por el contrario, registró un incremento del consumo aparente del 23% y representa en la actualidad prácticamente un 32% de la demanda mundial de acero. En Europa (UE25) y Norteamérica, tras un año 2004 marcado por un significativo aumento de los stocks motivado por las previsiones de incremento de precios, el ejercicio 2005 se caracterizó por un fenómeno de reducción de stocks, registrándose la siguiente evolución: -6% en Europa (UE25), -7% en Norteamérica, 0,0% en Sudamérica, +5% en CEI, +5% en Asia (excluida China), +3% en Oriente Medio.
Producción mundial de acero (2005)
La producción mundial de acero bruto en 2005 ascendió a 1.129,4 millones de toneladas, lo que supone un incremento del 5,9% con respecto a 2004. Esa evolución resultó dispar en las diferentes regiones geográficas. El aumento registrado se debe fundamentalmente a las empresas siderúrgicas chinas, cuya producción se incrementó en un 24,6%, situándose en 349,4 millones de toneladas, lo que representa el 31% de la producción mundial, frente al 26,3% en 2004. Se observó asimismo un incremento, aunque más moderado, en India (+16,7%). Asia produce actualmente la mitad del acero mundial, a pesar de que la contribución japonesa se ha mantenido estable. Paralelamente, el volumen de producción de las empresas siderúrgicas europeas y norteamericanas se redujo en un 3,6% y un 5,3% respectivamente.
RECICLAJE DEL ACERO

De esta manera todas las máquinas, estructuras, barcos, automóviles, trenes, etc., se desguazan al final de su vida útil y se separan los diferentes materiales que los componen, originando unos desechos seleccionados que se conocen con el nombre de chatarra.
Esta chatarra se prensa y se hacen grandes compactos en las zonas de desguace que se envían nuevamente a las acerías, donde se consiguen de nuevo nuevos productos siderúrgicos, tanto aceros como fundiciones. Se estima que la chatarra reciclada cubre el 40% de las necesidades mundiales de acero (cifra de 2006).
El acero se puede obtener a partir de mineral (ciclo integral) en instalaciones que disponen de Altos Hornos o partiendo de chatarras férricas (ciclo electrosiderúrgico) en Hornos Eléctricos.
Las chatarras seleccionadas contenidas en la cesta de carga se introducen en el horno eléctrico por su parte superior, en unión de agentes reactivos y escorificantes, desplazando la bóveda giratoria del mismo. Se funde la chatarra de una o varias cargas por medio de corriente eléctrica hasta completar la capacidad del horno. Este acero es el que va a constituir una colada. Se analiza el baño fundido y se procede a un primer afino para eliminar impurezas, haciendo un primer ajuste de la composición química por adición de ferroaleaciones que contienen los elementos necesarios.
En todo el proceso de reciclado hay que respetar las normas sobre prevención de riesgos laborales y las de carácter medioambiental. Al ser muy alto el consumo de electricidad, el funcionamiento del horno de fundir debe programarse hacerse cuando la demanda de electricidad es menor. Por otro lado, en la entrada de los camiones que transportan la chatarra a las industrias de reciclaje tiene que haber detectores de radioactividad, así como en diferentes fases del proceso.
El comercio de chatarra es un buen negocio que suministra materiales de segunda mano para su reutilización o reciclaje. La chatarra es un recurso importante, sobre todo porque recorta el gasto de materias primas y el de energía empleado en procesos como la fabricación del acero.
En el año 2006, debido al gran auge y gran demanda en el proceso constructivo en edificación, el precio del acero se está incrementando considerablemente, suponiendo el coste de la chatarra de acero un 20% del precio de mercado.
Como precaución general en el manejo de chatarra hay que tomar las medidas oportunas para no sufrir cortes que provoquen heridas, ya que es altamente infecciosa, produciendo la infección del tétanos, por eso el personal que maneja chatarra debe estar siempre vacunado contra esta infección y así no sufrir los daños provocados por los cortes que pueda sufrir. Cualquier persona que sufra un corte con un elemento de acero, debe acudir a un Centro Médico para que le vacunen contra el tétanos.